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Recently Mayeret al. [Phys. Rev. E68, 016116(2003)] proposed an alternative way to compute numeri-
cally the fluctuation-dissipation ratios in nonequilibrium critical systems. Using well-known facts of nonequi-
librium critical dynamics I show that the leading contributions of the quantities they consider are in fact
one-time quantities which are independent of the waiting time. The ratio of these one-time quantities deter-
mines the slope of the straight lines observed in the fluctuation-dissipation plots of Mayeret al.
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In a recent work[1] Mayer, Berthier, Garrahan, and Sol-
lich (MBGS in the following) presented a study of aging
phenomena taking place in nonequilibrium Ising models in
one and two space dimensions after a quench from infinite
temperature to the critical point located atT=Tc. MBGS
presentinter alia Monte Carlo simulations at the critical
point of the two-dimensional Ising model. These simulations
are aimed at computing fluctuation-dissipation ratiosXst ,twd
which are defined by

Xst,twd = TcRk=0st,twdY ] Ck=0st,twd
] tw

, s1d

wheret is the time elapsed since the quench(called observa-
tion time) and tw, t is the waiting time.Ck=0st ,twd and
Rk=0st ,twd are the long-wavelength limits of the Fourier
transforms of the commonly studied spin-spin-correlation
function and of the conjugate response function[2–4]. The
quantities]Ck=0st ,twd /]tw and Rk=0st ,twd have been investi-
gated field-theoretically by Calabrese and Gambassi in[5].
From general scaling arguments they are expected to scale in
the aging limittw@1, t− tw@1 as[5]

] Ck=0st,twd
] tw

= A]Cst − twdaS t

tw
Du

F]Cstw/td, s2d

Rk=0st,twd = ARst − twdaS t

tw
Du

FRstw/td, s3d

with a+1=s2−hd /z and u=sd/zd−slc/zd−a. Here d is the
number of space dimensions,z the dynamical exponent,lc
the autocorrelation exponent, whereash is the usual equilib-
rium critical exponent. The functionsF]Csvd and FRsvd are
universal withF]Cs0d=FRs0d=1. Equations(2) and (3) can
also be written in the following form:

] Ck=0st,twd
] tw

= tw
a f]Cst/twd, s4d

Rk=0st,twd = tw
a fRst/twd, s5d

where the scaling functionsf]Csxd and fRsxd vary as

f]C,Rsxd , xu8 s6d

for x@1, i.e., 1! tw! t. Here u8=a+u is the well-known
initial-slip exponent of the magnetization[6] which for the
critical Ising model takes the value 0.19 in two dimensions.
This power-law behavior(6) will be of importance in the
following.

In their simulations MBGS do not have direct access to
Rk=0st ,twd and]Ck=0st ,twd /]tw. They instead investigate inte-
grated quantities:

Gst,twd =E
tw

t

du
] Ck=0st,ud

] u
= Ck=0st,td − Ck=0st,twd s7d

and

xmst,twd = TcE
tw

t

duRk=0st,ud s8d

as these quantities are easily obtained in numerical simula-
tions. Plottingxmst ,twd againstGst ,twd they obtain within the
accuracy of their numerical data straight lines with constant
slopes. The value of the slope is identified by MGBS with
the fluctuation-dissipation ratioXst ,twd, see Eq.(1), yielding
the claim thatXst ,twd is independent of the waiting timetw.
Note that this independence on the waiting time is not sup-
ported by the field-theoretical results[5] which yield a
fluctuation-dissipation ratio(1) dependent ontw at two loops.
In addition, MBGS conclude that their ratioxmst ,twd /Gst ,twd
gives the limit valueX`= lim

tw→`

slim
t→`

Xst ,twdd for all times t.

It is the purpose of this Comment to discuss the integrated
quantities involved in the MBGS analysis of the critical two-
dimensional Ising model. I shall show that the leading con-
tributions to(7) and(8) do in fact not depend on the waiting
time (these one-time quantities will be called nonaging in the
following). Furthermore, I shall demonstrate that the con-
stant slope observed by MBGS is given by the ratio of the
waiting time independent quantities. It is therefore not a di-
rect manifestation of aging, i.e., waiting time dependent, be-
havior.

The origin of the leading, waiting time independent term
is readily understood by looking at the integrals(7) and (8).
Inserting the scaling forms(4) and (5) one obtains:Gst ,twd
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, tw
a+1fGst / twd andxmst ,twd, tw

a+1fxst / twd. However in doing
so we did not pay attention to the conditions of validity of
(4) and(5). Indeed, close to the upper integration limit these
scaling forms cannot be used, since there the conditiont
@u@1 is not fulfilled. One might therefore argue that a time
scalet* exists such that only foru&t* the forms(4) and (5)
hold. As shown in the following, the time integrals in(7) and
(8) indeed yield a contribution with a scaling behavior which
differs from that of an aging quantity.

The correlationCk=0st ,twd of the magnetization is given
by [7]

Ck=0st,twd = NKS 1

N
o
i=1

N

sistdDS 1

N
o
i=1

N

sistwdDL , s9d

wheresistd is the value of the spin located at the lattice sitei
at time t. N is the total number of lattice sites, whereask¯l
indicates an average over the thermal noise. InGst ,twd, ana-
lyzed by MBGS, this aging quantity is subtracted from the
one-time quantityCk=0st ,td=Nkss1/Ndoi=1

N sistdd2l, see (7).
This latter quantity is usually denoted byMs2dstd in the lit-
erature and has been extensively studied in the context of
short-time critical dynamics, see, e.g.,[8–10]. Standard scal-
ing arguments[9] show that immediately after the quench
Ck=0st ,td grows astsd−2b/nd/z, whered is the number of space
dimensions andb and n are the usual equilibrium critical
exponents. For the two-dimensional Ising model we have
sd−2b /nd /z<0.81. ThereforeGst ,twd is composed of a
nonaging part(i.e., a part which does not depend on the
waiting time) and of an aging part where the first one grows
much faster in time than the second one. Indeed, it follows
from the dynamical scaling behavior[5] that for later times
Ck=0st ,twd, tu8 with u8=sd−lcd /z. Rigorous arguments[11]
yield the inequality lcùd/2, thus thatCk=0st ,twd never
grows faster thantd/2z. This is illustrated in Fig. 1 where I
plot Gst ,twd as a function oft− tw for two of the waiting
timesstw=46,193d considered by MBGS and compare them
to Ck=0st ,td (grey line). These data have been obtained in
standard simulations of the two-dimensional Glauber-Ising
model with heat-bath dynamics. The two dotted-dashed lines
indicate the two different power laws involved: the leading
contribution ,t0.81 and the subleading, aging contribution
,t0.19. Clearly Gst ,twd increases much faster then expected
for an aging quantity and rapidly displays a behavior similar
to its leading contributionCk=0st ,td. As shown in the inset
Ck=0st ,twd itself indeed increases asst / twd0.19 (dotted-dashed
lines), in complete agreement with the general scaling argu-
ments given above. This power-law behavior is already en-
countered for observation times slightly larger than the wait-
ing time.

To compute the susceptibility of the magnetization a small
homogeneous constant field of strengthh is switched on after
the waiting timetw [1]. The integrated susceptibility is then
given by [7]

xmst,twd =
Tc

Nh
ko

i=1

N

sil =
Tc

h
m. s10d

The magnetizationm is measured for timest. tw and de-
pends both ont and tw. Starting from an uncorrelated initial

state, the dynamical correlation length increases with time,
jstd, t1/z, up totw. The homogeneous external field, which is
applied for timestù tw, drives the system away from the
critical point towards a new equilibrium point located atT
=Tc andm=mfinal.0. This new equilibrium point is reached
at finite times, independently of the waiting time. This is also
the case when the system is already in equilibrium at the
critical point and a homogeneous external field is then
switched on. One therefore expects that the extension of the
correlated regions(and therefore the value oftw) is only of
importance for a short period after the application of the
field, but that at later times the system loses the memory of
the value of jstwd, thus thatxmst ,twd approachesxFCstd :
=xmst ,0d for all waiting times. Here,xFCstd is the field cool-
ing susceptibility. This is illustrated in Fig. 2, where the field
strengthh=0.0004 is the same as that used by MBGS[12].
One indeed observes that the curves withtwÞ0 rapidly ap-
proach the curve fortw=0. Note that the plateau reached at
longer times is not a finite-size effect, but is due to the new
equilibrium point. One further remarks from Fig. 2 that
xFCstd exhibits a power-law behavior. The value of the cor-
responding exponent can be obtained from the standard dy-
namical scaling relation form [9] (with mst=0d=0)

mst,t,hd = b−b/nmsb−zt,b1/nt,bd−b/nhd, s11d

wheret is the reduced temperature. In our caset=0 as the
temperature is fixed atTc after the quench. Settingb= t1/z one
gets

mst,hd = t−b/nzms1,tsd−b/nd/zhd s12d

and

FIG. 1. Gst ,twd vs t− tw for two different waiting timestw=46
and 193. The grey line is the leading waiting time independent
contributionCk=0st ,td which grows in time with a power-law with
an exponentsd−2b /nd /z<0.81. Systems with 3003300 spins
have been simulated, and all the data shown in the present work
have been averaged over 70 000 different runs. The inset shows that
the aging partCk=0st ,twd of Gst ,twd indeed grows ast0.19, as pre-
dicted by scaling arguments.
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xFCstd =
Tc

h
mst,hd , tsd−2b/nd/z, s13d

where the last steph is valid for t!h−sd−b/nd/z. This expected
power-law behavior is also shown in Fig. 2. It is important to
note that xFCstd increases with the same exponentsd
−2b /nd /z as the leading contributionCk=0st ,td of the corre-
lation Gst ,twd, and this already after a few time steps.

As the leading nonaging contributions of both quantities
used by MBGS display the same power-law behavior, one
may wonder whether the straight lines observed in their
fluctuation-dissipation plots, Figs. 8 and 10 in[1], are not
simply due to the nonaging parts. From the scaling argu-
ments one expects that the ratioxmst ,twd /Gst ,twd is given by
xmst ,twd /Gst ,twd=xFCstd /Ck=0st ,td+Ost2b/nz−lc/zd with
2b /nz−lc/z=−0.62 for the two-dimensional Ising model.
The ratio xFCstd /Ck=0st ,td is expected to take a constant

value X̄ already after a few time steps. This is indeed the
case, as shown in Fig. 3. Here I plotxFCstd as a function of
Ck=0st ,td and compare the resulting line with those obtained
when plottingxmst ,twd as function ofGst ,twd for tw=46 and
193, as done by MBGS. The behavior of these quantities at
the very first time steps is displayed in the inset. It is now
obvious why MBGS obtain straight lines with a constant

slope for any value of the waiting timetw: the aging(i.e.,
waiting time dependent) parts are rapidly suppressed in this
kind of plot and the slope is then identical to the slope ob-
tained from two quantities which do not depend on the wait-
ing time and which furthermore have the same time depen-
dence.

In conclusion, I have shown that the leading terms of the
integrated quantities used in[1] for the numerical determina-
tion of the fluctuation-dissipation ratios are independent of
the waiting time. I have also shown that the leading terms of
the correlation(9) and the susceptibility(10) grow in time
with the same power-law. This explains why MBGS observe
in their fluctuation-dissipation plots straight lines with a con-
stant slope that does neither depend on the waiting timetw
nor on the observation timet.
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