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Recently Mayeret al. [Phys. Rev. E68, 016116(2003] proposed an alternative way to compute numeri-
cally the fluctuation-dissipation ratios in nonequilibrium critical systems. Using well-known facts of nhonequi-
librium critical dynamics | show that the leading contributions of the quantities they consider are in fact
one-time quantities which are independent of the waiting time. The ratio of these one-time quantities deter-
mines the slope of the straight lines observed in the fluctuation-dissipation plots of Btagker
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In a recent wor 1] Mayer, Berthier, Garrahan, and Sol-
lich (MBGS in the following presented a study of aging

PACS nun)er05.70.Ln, 75.40.Gb, 75.40.Mg

facr(¥) ~x” (6)

phenomena taking place in nonequilibrium Ising models infor x>1, i.e., 1<t,<t. Here #'=a+¢ is the well-known
one and two space dimensions after a quench from infiniténitial-slip exponent of the magnetizatid®] which for the

temperature to the critical point located &atT.. MBGS

critical Ising model takes the value 0.19 in two dimensions.

presentinter alia Monte Carlo simulations at the critical This power-law behavio(6) will be of importance in the
point of the two-dimensional Ising model. These simulationsfollowing.

are aimed at computing fluctuation-dissipation radds t,,)
which are defined by

d CKZO(ta tW)

X(t!tw) :TCRk=O(t!tW)/ Ti (1)

wheret is the time elapsed since the quergchlled observa-

tion time) and t, <t is the waiting time.Cy_((t,t,) and

Ro(t,t,) are the long-wavelength limits of the Fourier
transforms of the commonly studied spin-spin-correlation

function and of the conjugate response functjigr4]. The

quantitiesdCy—y(t,t,)/ dt,, and Ro(t,t,) have been investi-

gated field-theoretically by Calabrese and Gambas$bjn

In their simulations MBGS do not have direct access to
Reo(t, ty) anddCo(t,ty,)/ oty They instead investigate inte-
grated quantities:

U 9Ct,
L) = J uZCetY _ o) - Coltt) ()
.y au
and

t

Xm(tty) = TCJ duR(t,u) (8

by

as these quantities are easily obtained in numerical simula-
tions. Plottingy,(t,t,) againstG(t,t,) they obtain within the

From general scaling arguments they are expected to scale dtcuracy of their numerical data straight lines with constant

the aging limitt,,>1, t—t,>1 as[5]

6
&C%t(ttw) =Anclt- tw)a<t£) Factw/t), @

4
Ri=olt,tw) = Ar(t = tw)a( tl) Fritu/t), )

with a+1=(2-7)/z and §=(d/2)-(\./z)—a. Hered is the

number of space dimensionsthe dynamical exponenk,

the autocorrelation exponent, whereass the usual equilib-
rium critical exponent. The functionS,:(v) and Fg(v) are

universal withF,-(0)=Fg(0)=1. Equationg2) and (3) can

also be written in the following form:

dCr=o(t,ty) _
% =3 fc(t/ty), (4)
Rico(t, ty) = tofr(t/t,), (5)

where the scaling functionc(x) and fg(x) vary as
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slopes. The value of the slope is identified by MGBS with
the fluctuation-dissipation rati¥(t,t,,), see Eq(1), yielding

the claim thatX(t,t,) is independent of the waiting tintg.
Note that this independence on the waiting time is not sup-
ported by the field-theoretical resul{®] which yield a
fluctuation-dissipation rati@l) dependent ot at two loops.

In addition, MBGS conclude that their ratjg,(t,t,)/G(t,t,)
gives the limit valueX”= lim (limX(t,t,)) for all timest.

tyy—* t—o

It is the purpose of this Comment to discuss the integrated
quantities involved in the MBGS analysis of the critical two-
dimensional Ising model. | shall show that the leading con-
tributions to(7) and(8) do in fact not depend on the waiting
time (these one-time quantities will be called nonaging in the
following). Furthermore, | shall demonstrate that the con-
stant slope observed by MBGS is given by the ratio of the
waiting time independent quantities. It is therefore not a di-
rect manifestation of aging, i.e., waiting time dependent, be-
havior.

The origin of the leading, waiting time independent term
is readily understood by looking at the integrél$ and(8).
Inserting the scaling form&}) and (5) one obtainsG(t,t,)
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~ 5 e(t/ty) and xu(t,t,) ~ 5, (t/t,). However in doing
so we did not pay attention to the conditions of validity of
(4) and(5). Indeed, close to the upper integration limit these
scaling forms cannot be used, since there the condition
>u>1is not fulfilled. One might therefore argue that a time
scalet” exists such that only fon<t" the forms(4) and(5)
hold. As shown in the following, the time integrals(in) and
(8) indeed yield a contribution with a scaling behavior which
differs from that of an aging quantity.

The correlationC,_q(t,t,) of the magnetization is given

by [7]

10 10° 10

1 1 —
Creo(t,ty) =N (NE s(t)) (NE s(tw>) , (9 t-t,
i=1 i=1

FIG. 1. G(t,t,) vs t-t, for two different waiting timeg,,=46
and 193. The grey line is the leading waiting time independent

indi he th | NOISES contributionCy((t,t) which grows in time with a power-law with
indicates an average over the thermal noise(nt,), ana- an exponent(d-28/v)/z=0.81. Systems with 300300 spins

wheres(1) is the value of the spin located at the lattice site
at timet. N is the total number of lattice sites, whergas)

Iyzed_ by MBGS} this aging quantity '?\l SUbtr‘;"Cted from thehave been simulated, and all the data shown in the present work
one-time quam't_ycl_co(t’t): N((L/N)Zi2 (1) >’_ see (7). have been averaged over 70 000 different runs. The inset shows that
This latter quantity is usually denoted B(t) in the lit-  he aging parCi(t,t,) of G(t,t,) indeed grows at’1® as pre-
erature and has been extensively studied in the context @ficted by scaling arguments.

short-time critical dynamics, see, e.f~10. Standard scal-
ing argumentg9] show that immediately after the quench

Crso(t,1) grows ast@28/z whered is the number of space state, the dynamical correlation length increases with time,
k:O 1 )

dimensions an@3 and v are the usual equilibrium critical g(t)ftllz’ up toty, The homogeneous external field, which is
exponents. For the two-dimensional Ising model we havé"‘pp“ed fqr timest=t,, drives th.e' system away from the
(d-2B/v)/z~0.81. ThereforeG(t,t,) is composed of a critical point towards a new eqwllb_rlu_m point Io_cated'lélt
nonaging parti.e., a part which does not depend on the = c @dM=Mg > 0. This new equilibrium point is reached
waiting time) and of an aging part where the first one grOWSat finite times, mdependently_of the wautmg tlm(_a: T_hls is also
much faster in time than the second one. Indeed, it followghe case when the system is already in equilibrium at the

from the dynamical scaling behavig] that for later times ~ Cfitical point and a homogeneous external field is then
Croolt tW)~t9/ with 6 =(d-\)/z Rigorous argumentil1] switched on. One therefore expects that the extension of the

correlated regiongand therefore the value af) is only of
importance for a short period after the application of the
field, but that at later times the system loses the memory of

yield the inequality\,=d/2, thus thatC,_q(t,t,) never
grows faster than??. This is illustrated in Fig. 1 where |

plot G(t,t,) as a function oft—t,, for two of the waiting
: _ . the value ofé&(t,), thus thatyq(t,t,) approachesygc(t):
times (t, =46, 193 considered by MBGS and compare them =xm(t,0) for all waiting times. Hereyr(t) is the field cool-

©0 Cieglt,1) (grey ling. These data have been obtained in 15 oo oviin This is illustrated in Fig. 2, where the field

standard simulations of the two-dimensional Glauber-Isin " .
model with heat-bath dynamics. The two dotted-dashed Iineggren.gthh_0'0004 Is the same as that u_sed by MBQB]'
ne indeed observes that the curves vtk 0 rapidly ap-

indicate the two different power laws involved: the leading _
contribution ~t>*" and the subleading, aging contribution rgr?ggrr] titrrsweesc lijsrvneoiof;rlwfi_n?t.el\lsci);z\z g]f?;ctth%tﬁ)tlail;egﬂer?c? Ctngdng\t/v
__10.19 : - ,

. Clearly G(t,t,) increases much faster then EEXpQCtEdequiIibrium point. One further remarks from Fig. 2 that

for an aging quantity and rapidly displays a behavior similar L .
to its Iegdiggq contri)llautiorck_po(t %). AFs) s%nown in the inset Xrcll) exhibits a power-law behavior. The value of the cor-

. . ! responding exponent can be obtained from the standard dy-
Cio(t,t,) itself indeed increases &t't,,)%° (dotted-dashed narEicaI sgaling relation fom [9] (with m(t=0)=0) y
lines), in complete agreement with the general scaling argu-

ments given above. This power-law behavior is already en-
countered for observation times slightly larger than the wait- m(t, 7,h) = b#"m(b %, b 7, b Fl7h), (1)
ing time.

To compute the susceptibility of the magnetization a small
homogeneous constant field of strengtis switched on after where 7 is the reduced temperature. In our case) as the
the waiting timet,, [1]. The integrated susceptibility is then temperature is fixed &t after the quench. Setting=t'? one
given by[7] gets

N
Tyl
Xnltita) = (2 8) = Fm. (10) Mt h) = (L B (12)

The magnetizationm is measured for times>t,, and de-
pends both on andt,,. Starting from an uncorrelated initial and
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FIG. 2. The susceptibilty of the magnetizatigp(t, t,,) as func- FIG. 3. Fluctuation-dissipation plot similar to Fig. 8 ] for

tion of the timet-t,, elapsed since the switching on of the homo- waiting timest,=46 and 193. Only every 200th data point is

geneous constant external field. One observes that the curves fehown. The grey line is the correponding curve obtained from plot-

waiting timest,, # 0 rapidly converge to the curve obtained fgr  ting the leading waiting time independent contributigic(t)

=0 where the system is quenchedloin presence of the field. The =x.,(t,0) of the susceptibility as function of the leading waiting

leading contribution of the susceptibility also grows with a power-time independent contributio@,—(t,t) of G(t,t,). Obviously, the

law with an exponentd-28/v)/z~=0.81. The thin dashed line in- slopes of the different curves are identical after very few time steps

dicates the final value of,(t,t,) at the new equilibrium point. and are exclusively due to the nonaging parts of the different quan-
tities, see inset.

Yec(t) = Icm(t,h) ~ tld-2pm)lz. (13)  slope for any value of the waiting time,: the aging(i.e.,
h waiting time dependentparts are rapidly suppressed in this
kind of plot and the slope is then identical to the slope ob-
where the last step is valid for t<h™@#"/z This expected tained from two quantities which do not depend on the wait-
power-law behavior is also shown in Fig. 2. It is important toing time and which furthermore have the same time depen-
note that yec(t) increases with the same exponefd  dence.
-2B/v)lz as the leading contributio@,_q(t,t) of the corre- In conclusion, | have shown that the leading terms of the
lation G(t,t,,), and this already after a few time steps. integrated quantities used fih] for the numerical determina-
As the leading nonaging contributions of both quantitiestion of the fluctuation-dissipation ratios are independent of
used by MBGS display the same power-law behavior, onéhe waiting time. | have also shown that the leading terms of
may wonder whether the straight lines observed in theithe correlation(9) and the susceptibility10) grow in time
fluctuation-dissipation plots, Figs. 8 and 10[it], are not  with the same power-law. This explains why MBGS observe
simply due to the nonaging parts. From the scaling arguin their fluctuation-dissipation plots straight lines with a con-
ments one expects that the ragig(t,t,)/G(t,t,) is given by  stant slope that does neither depend on the waiting tjme
Xt 1)/ G(t, 1) = Xrc(t) / Creo(t, 1) + O(12817A7) with nor on the observation time
2Bl vz—\;/z=-0.62 for the two-dimensional Ising model.

The ratio yec(t)/Creolt,t) is expected to take a constant It is a pleasure to thank A. Gambassi for interesting dis-

i T cussions which led to the present study, and A. Gambassi and
value X already after a few time steps. This is indeed they|, Henkel for a critical reading of the manuscript. This work
case, as shown in Fig. 3. Here | plpic(t) as a function of \yas supported by the Bayerisch-Franzésisches Hoch-
Ci=o(t,t) and compare the resulting line with those obtainedschulzentrum(BFHZ) and by CINES MontpellieqProject
when plottingx(t,t,) as function ofG(t,t,) for t,=46 and  No. pmn2095. Some simulations have also been done on the
193, as done by MBGS. The behavior of these quantities aA32 cluster of the Regionales Rechenzentrum Erlangen

the very first time steps is displayed in the inset. It is now(RRZE). | thank G. Hager of the HPC-team of RRZE for
obvious why MBGS obtain straight lines with a constanttechnical assistance.
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